首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2893篇
  免费   484篇
  国内免费   47篇
  2024年   9篇
  2023年   90篇
  2022年   94篇
  2021年   229篇
  2020年   219篇
  2019年   251篇
  2018年   189篇
  2017年   112篇
  2016年   104篇
  2015年   160篇
  2014年   250篇
  2013年   212篇
  2012年   170篇
  2011年   166篇
  2010年   100篇
  2009年   96篇
  2008年   103篇
  2007年   100篇
  2006年   118篇
  2005年   90篇
  2004年   64篇
  2003年   71篇
  2002年   50篇
  2001年   36篇
  2000年   41篇
  1999年   24篇
  1998年   26篇
  1997年   38篇
  1996年   19篇
  1995年   15篇
  1994年   27篇
  1993年   21篇
  1992年   22篇
  1991年   16篇
  1990年   18篇
  1989年   11篇
  1988年   12篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   13篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1974年   3篇
  1971年   1篇
排序方式: 共有3424条查询结果,搜索用时 85 毫秒
1.
《Cell》2022,185(1):158-168.e11
  1. Download : Download high-res image (139KB)
  2. Download : Download full-size image
  相似文献   
2.
There have been numerous reports in the literature describing the diversity of microbial flora isolated from woodwind and brass instruments, with potential infection risks for players, especially when such instruments are shared. Steam disinfection has become established as a trusted method of decontamination; however, there have been no reports on the employment of this technology to disinfect parts of musical instruments, hence it was the aim of this study to examine the fate of bacterial and yeast pathogens on artificially contaminated trumpet mouthpieces and to evaluate whether such disinfection is an effective method of disinfection for such instrument parts. Trumpet mouthpieces were artificially contaminated with 18 microbial strains (17 bacteria from four genera (Enterococcus, Escherichia, Staphylococcus and Streptococcus) and one yeast (Candida)), each at an inoculum density of approximately 1·5 × 107 colony forming units and subjected to a disinfection cycle. The experiment was repeated including 50% (v/v) sterile sputum as soil. No bacteria or yeast organisms were recovered post disinfection, including following recovery and with nonselective cultural enrichment techniques.  相似文献   
3.
Cystic fibrosis (CF), a multiorgan genetic disease, is caused by loss of function of CFTR, a cAMP-regulated anion channel. In CF airway epithelia, defective Cl and bicarbonate secretion impairs mucociliary clearance and other innate defense mechanisms, favoring the colonization of the lungs by highly virulent bacteria. The airway epithelium expresses TMEM16A, a second type of Cl channel that is activated by cytosolic Ca2+. TMEM16A is particularly expressed in goblet cells. This specific localization could be important in the release and hydration of mucins. Activation of TMEM16A with pharmacological agents could circumvent the primary defect in CF. This strategy needs to be carefully designed and tested to avoid possible undesired effects due to the expression of TMEM16A in other cell types such as bronchial smooth muscle cells.This article is part of a Directed Issue entitled: Cystic Fibrosis: From o-mics to cell biology, physiology, and therapeutic advances.  相似文献   
4.
《Developmental cell》2022,57(18):2221-2236.e5
  1. Download : Download high-res image (185KB)
  2. Download : Download full-size image
  相似文献   
5.
Liver fibrogenesis is a dynamic cellular and tissue process which has the potential to progress into cirrhosis of even liver cancer and liver failure. The activation of hepatic stellate cells (HSCs) is the central event underlying liver fibrosis. Besides, hepatic macrophages have been proposed as potential targets in combatting fibrosis. As for the relationship between HSCs and hepatic macrophages in liver fibrosis, it is generally considered that macrophages promoted liver fibrosis via activating HSCs. However, whether activated HSCs could in turn affect macrophage polarization has rarely been studied. In this study, mRNAs with significant differences were explored using exosomal RNA-sequencing of activated Lx-2 cells and normal RNA-sequencing of DHFR loss-of-function Lx-2 cell models. Cell functional experiments in both Lx-2 cells and macrophages animal model experiments were performed. The results basically confirmed exosomes secreted from activated HSCs could promote M1 polarization of macrophages further. Exosome harbouring DHFR played an important role in this process. DHFR silence in HSCs could decrease Lx-2 activation and M1 polarization of M0 macrophages and then alleviate the development of liver fibrosis both in vitro and vivo. Our work brought a new insight that exosomal DHFR derived from HSCs had a crucial role in crosstalk between HSCs activation and macrophage polarization, which may be a potential therapeutic target in liver fibrosis.  相似文献   
6.
7.
Thirty-one 4-oxoquinoline-3-carboxamides derivatives were synthesized and evaluated for their anti-fibrotic activities by the inhibition of TGF-β1-induced total collagen accumulation and anti-inflammatory activities by the inhibition of LPS-stimulated TNF-α production. Among them, three compounds (10a, 10l and 11g) exhibited potent inhibitory effects on both TGF-β1-induced total collagen accumulation and LPS-stimulated TNF-α production. Furthermore, oral administrations of 10l at a dose of 20 mg/kg/day for 4 weeks effectively alleviated lung inflammation and injury, and decreased lung collagen accumulation in bleomycin-induced pulmonary fibrosis model. Histopathological evaluation of lung tissue confirmed 10l as a potential, orally active agent for the treatment of pulmonary fibrosis.  相似文献   
8.
9.
Misfolding and degradation of CFTR is the cause of disease in patients with the most prevalent CFTR mutation, an in-frame deletion of phenylalanine (F508del), located in the first nucleotide-binding domain of human CFTR (hNBD1). Studies of (F508del)CFTR cellular folding suggest that both intra- and inter-domain folding is impaired. (F508del)CFTR is a temperature-sensitive mutant, that is, lowering growth temperature, improves both export, and plasma membrane residence times. Yet, paradoxically, F508del does not alter the fold of isolated hNBD1 nor did it seem to perturb its unfolding transition in previous isothermal chemical denaturation studies. We therefore studied the in vitro thermal unfolding of matched hNBD1 constructs ±F508del to shed light on the defective folding mechanism and the basis for the thermal instability of (F508del)CFTR. Using primarily differential scanning calorimetry (DSC) and circular dichroism, we show for all hNBD1 pairs studied, that F508del lowers the unfolding transition temperature (Tm) by 6–7°C and that unfolding occurs via a kinetically-controlled, irreversible transition in isolated monomers. A thermal unfolding mechanism is derived from nonlinear least squares fitting of comprehensive DSC data sets. All data are consistent with a simple three-state thermal unfolding mechanism for hNBD1 ± F508del: N(±MgATP) ⇄ IT(±MgATP) → AT → (AT)n. The equilibrium unfolding to intermediate, IT, is followed by the rate-determining, irreversible formation of a partially folded, aggregation-prone, monomeric state, AT, for which aggregation to (AT)n and further unfolding occur with no detectable heat change. Fitted parameters indicate that F508del thermodynamically destabilizes the native state, N, and accelerates the formation of AT.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号